

Aplicaciones bioinformáticas en GPUs: Imágenes de alta resolución y análisis genómico

Manuel Ujaldón Martínez Nvidia CUDA Fellow Departamento de Arguitectura de Computadores

Universidad de Málaga

Mathematic Modeling

Indice de contenidos [70 diapositivas]

1. Introducción. [13]

- 2. Procesamiento de imágenes en GPU con CUDA [44]
 - 1. Caracterización de la imagen: Extracción de rasgos. [22] 1. Kernels desarrollados. [11]
 - 2. Implementación en CUDA. [3]
 - 3. Análisis de rendimiento. [8]
 - 2. Segmentación y clasificación de imágenes biomédicas de alta resolución. [10]
 - 3. Registro y reconstrucción 3D de imágenes biomédicas. [12]
- 3. Análisis genómico [11]

1. Q-norm: Comparativa frente a supercomputadores de memoria compartida y distribuida. [9]

- 2. Interacciones genéticas en GWAS [2]
- 4. Reflexiones finales [2]

Manuel Ujaldon - Nvidia CUDA Fellow

En apenas 5 años, la programación CUDA está muy extendida y plenamente consolidada

Se publican más de 500 artículos científicos cada año.
Más de 500 universidades incluyen CUDA en sus cursos.
Más de 350 millones de GPUs se programan con CUDA.
Más de 120.000 programadores CUDA en activo.
Más de un millón de descargas del compilador y toolkit.

Muchos de los supercomputadores más potentes se construyen con GPUs

Rank	Site	Computer/Year Vendor	Cores	R _{max}	Rpeak	Power		Rank	Site	Computer/Year	Cores	R _{max}	Rpeak	Power
1	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom / 2011 IBM	1572864	16324.75	20132.66	7890.0		1	RIKEN Advanced Institute for Computational Science (AICS)	K computer, SPARC84 VIIIfx 2.0GHz, Tofu interconnect / 2011 Fullsu	705024	10510.00	11280.38	12659.9
2	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect / 2011 Fujitsu	705024	10510.00	11280.38	12659.9	Å	2	National Supercomputing Center in Tianjin China	NUDT YH MPP, Xeon X5670 6C 2.93 GHz, NVIDIA 2050 / 2010	186368	2566.00	4701.00	4040.0
3	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom / 2012 IBM	786432	8162.38	10066.33	3945.0	ľ	3	DOE/SC/Oak Ridge National Laboratory United States	Cray XT5-HE Opteron 6-core 2.6 GHz / 2009 Cray Inc.	224162	1759.00	2331.00	6950.0
1	Leibniz Rechenzentrum Germany	SuperMUC - iDataPlex DX360M4, Xeon E5-2680 8C 2.70GHz, Infiniband FDR / 2012 IBM	147456	2897.00	3185.05	3422.7	1	4	National Supercomputing Centre in Shenzhen (NSCS) China	Dawning TC3600 Blade System, Xeon X5650 6C 2.66GHz, Infiniband QDR, NVIDIA 2050 / 2010	120640	1271.00	2984.30	2580.0
5	National Supercomputing Center in Tianjin China	Tianhe-1A - NUDT YH MPP, Xeon X5670 6C 2.93 GHz, NVIDIA 2050 / 2010 NUDT	186368	2566.00	4701.00	4040.0	R	5	GSIC Center, Tokyo Institute of Technology Japan	HP ProLiant SL390s G7 Xeon 6C X5670, Nvidia GPU, Linux/Windows / 2010 NEC/HP	73278	1192.00	2287.63	1398.6
5	DOE/SC/Oak Ridge National Laboratory United States	Jaguar - Cray XK6, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA 2090 / 2009 Cray Inc.	298592	1941.00	2627.61	5142.0	Γ	6	DOE/NNSA/LANL/SNL United States	Cray XE6, Opteron 6136 8C 2.40GHz, Custom / 2011 Cray Inc.	142272	1110.00	1365.81	3980.0
7	CINECA Italy	Fermi - BlueGene/Q, Power BQC 16C 1.60GHz, Custom / 2012 IBM	163840	1725.49	2097.15	821.9		7	NASA/Ames Research Center/NAS United States	SGI Altix ICE 8200EX/8400EX, Xeon HT QC 3.0/Xeon 5570/5670 2.93 Ghz, Infiniband / 2011	111104	1088.00	1315.33	4102.0
3	Forschungszentrum Juelich (FZJ) Germany	JuQUEEN - BlueGene/Q, Power BQC 16C 1.60GHz, Custom / 2012 IBM	131072	1380.39	1677.72	657.5		8	DOE/SC/LBNL/NERSC	SGI Cray XE6, Opteron 6172 12C 2.10GHz, Custorn / 2010	153408	1054.00	1288.63	2910.0
9	CEA/TGCC-GENCI France	Curie thin nodes - Bullx B510, Xeon E5-2680 8C 2.700GHz, Infiniband QDR / 2012 Bull	77184	1359.00	1667.17	2251.0		9	Commissariat a l'Energie Atomique (CEA)	Cray Inc. Bull bullx super-node S6010/S6030 / 2010	138368	1050.00	1254.55	4590.0
10	National Supercomputing Centre in Shenzhen (NSCS) China	Nebulae - Dawning TC3600 Blade System, Xeon X5650 6C 2.66GHz, Infiniband QDR, NVIDIA 2050 / 2010 Dawning	120640	1271.00	2984.30	2580.0		10	DOE/NNSA/LANL United States	BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband / 2009 IBM	122400	1042.00	1375.78	2345.0

Y las herramientas de programación están también a la altura de estas exigencias

- Librerías.Lenguajes y APIs.
- Debuggers.

- Profilers.
- Gestión de tareas y recursos.

Lenguajes y herramientas útiles para el programador y su evolución

En el contexto de la programación gráfica:

- 2001: HLSL (programación de shaders Microsoft).
- 2003: OpenGL y Cg (C vectorial para shaders Nvidia).
- © 2006: CUDA (GPGPU para plataformas Nvidia).
- 2009: OpenCL (GPGPU para todo tipo de plataformas gráficas).
- 2012: OpenACC (para programadores menos avezados).

En el contexto de la programación paralela de CPUs:

- P-threads para las plataformas multi-core.
- MPI/OpenMP para las plataformas multi-socket.

Veamos cómo se relaciona todo esto basándonos en la programación de nuestras aplicaciones.

anuel Ujaldon - Nvidia CUDA Fell

Ø,

Versiones multinodo

Ruta seguida por nuestra primera aplicación: Extracción de rasgos de una imagen

©,

Ruta seguida por nuestra segunda aplicación: Segmentación y clustering de imágenes

Ruta seguida por nuestra tercera aplicación: Registro y reconstrucción 3D

Conversiones de formato para el color

Son operadores "streaming", los más afines a la GPU.

- Utilizados para representar con mayor fidelidad el color en
- el procesamiento de imágenes. Por ejemplo:
 - Color por adición (luz en monitores): RGB, XYZ.
 - Color por sustracción (tinta en papel): CMYK.
 - Gestión del color: LUV, LA*B*, HSV.
 - Almacenamiento digital y fotografía: sRGB, JPEG, PNG.
 - © Representación de texturas para renderización (bitmaps).

Se requiere una conversión si el formato de origen y el más útil para la aplicación no coinciden. Para nuestro estudio, elegimos los formatos origen RGB y sRGB, y los formatos destino XYZ, Luv, LA*B* y HSV (8 operadores de conversión).

Operadores que vamos a implementar en CUDA para caracterizar imágenes

Operadores streaming: Conversiones de formato para el tratamiento del color. Opera sobre cada píxel de forma exclusiva.

Casos estudio: 8 conversiones entre diferentes formatos.

Operadores stencil: Aplicados a un entorno de vecindad de cada uno de los píxeles. Dependencias de datos.

Caso estudio: LBP (Local Binary Pattern).

Operadores con indirecciones (en el acceso a vectores):
 Caso estudio: Matrices de co-ocurrencia (histogramas 2D).

Operadores recursivos:

• Caso estudio: Momentos de Zernike (métodos iterativos y directos).

Manuel Ujaldon - Nvidia CUDA Fellow

Conversiones de formato de color: Un ejemplo

Conversión de RGB (formato de entrada) a XYZ (formato de salida). Cada componente de la terna XYZ se calcula como una combinación lineal de los tres elementos RGB.

X		(0.4124	0.3575	0.1804		(R)
Y	=	0.2126	0.7151	0.0721	*	G
z)		0.0193	0.1191	0.9502		B

El nuevo resultado XYZ para cada píxel depende únicamente de los valores RGB de ese mismo píxel.

Los cálculos son independientes y podemos aplicar paralelismo, aunque la fórmula no tiene mucha intensidad aritmética.

Operadores en el entorno de vecindad: LBP (Local Binary Pattern) (1)

Basado en patrones binarios locales (Ojala, 2002)

Recoge la proporción de micro-rasgos tales como aristas, brillo y puntos oscuros.

Resulta muy utilizado en aplicaciones como el reconocimiento de expresiones faciales.

Matrices de co-ocurrencia

Ideadas por Haralick (1973).

Histograma de intensidades de pares de píxeles que guardan una determinada relación espacial [dx,dy].

Recoge la variación espacial de intensidades.

Se usa como estructura de datos intermedia para calcular ciertos rasgos: Contraste, correlación, energía, ...

Ejemplo para una pequeña imagen con cuatro niveles de intensidad:

		~			-	-			
	0/	1	2	3		0	ື 1	2	3
0	3	0	1	/1	्रे०	1	2) 1	0
1	0	Õ	1)1	1	0	2	0	0
2	0	2	2	2	2	0	0	3	1
3	2	2	3	3	3	1	0	0	1

Operadores en el entorno de vecindad: LBP (Local Binary Pattern) (2)

Es invariante a la rotación de la imagen y a variaciones de intensidad local o global.

Para ello, cada valor obtenido se caracteriza dentro de una de las nueve clases siguientes:

Manuel Ujaldon - Nvidia CUDA Fellow

DVIDI

O.

Variantes para el cálculo de las matrices de co-ocurrencia

Dependiendo de la aplicación que las utilice:

- Se calculan para cada píxel o subimagen a tratar.
- Tamaño de ventana a procesar centrada en cada píxel o subimagen: Desde pequeña (4x4) a grande (256x256).
- Espacio de color discretizado o completo [0..255].

Calculado para cada canal de color de forma separada o sobre escala de grises de forma conjunta.

Configuración experimental:

- Resolución de las imágenes de entrada.
- Tratamiento hardware: CPU vs GPU.
- Estructuras de datos: Matrices densas/dispersas.

Momentos de Legendre y Zernike

 Son filtros definidos en el dominio espacial como una forma directa de capturar las propiedades de una textura.
 Los polinomios de Legendre y Zernike representan una imagen mediante un conjunto de descriptores mutuamente independientes.

Los polinomios de Zernike son más exigentes computacionalmente que los de Legendre, pero también son invariantes a transformaciones lineales (escalado, rotación), siendo más atractivos para procesamiento de imágenes.

Momentos de Legendre y Zernike (2)

El momento calculado para una ventana centrada en un píxel puede interpretarse como una convolución de la imagen con una máscara.

Cuanto mayor es el número de momentos, mejor es la reconstrucción.

Las implementaciones existentes en CPU se han optimizado utilizando algoritmos recursivos, lo que plantea un reto a la GPU debido a las dependencias de datos entre iteraciones de los lazos.

La alternativa de cálculo utilizando métodos directos (vs. iterativos) resulta más rápida en GPU, ya que aunque se requieren más computos, se explota mucho más paralelismo.

Computación del momento de orden N y repetición M usando métodos directos

La carga computacional es mucho más elevada que utilizando métodos iterativos, pero también admite mayor paralelismo, lo que resulta decisivo para reducir el tiempo en la GPU.

FUNCTION Radial Polynomial (ρ, n, m) radial = 0for s = 0 to (n - m)/2radial = radialend for return radial **FUNCTION** Zernike Moments (n, m) $Z_r = 0$ $Z_i = 0$ cnt = 0for y = 0 to N - 1for x = 0 to N - 1 $\rho = \frac{\sqrt{(2x-N+1)^2+(2y-N+1)^2}}{2}$ $radial = \text{RadialPolynomial}(\rho, n, m)$ $theta = tan^{-1} \left(\frac{2y - N + 1}{2x - N + 1} \right)$ $z_r = z_r + f(x, y) \cdot radial \cdot \cos(m \cdot theta)$ $z_r = z_i + f(x, y) \cdot radial \cdot \sin(m \cdot theta)$ cnt = cnt + 1endif endfor endfor return $\frac{n+1}{cnt}(z_r + jz_i)$

Manuel Hialdon - Nvidia CLIDA Fellov

Ejemplo de optimización sobre la jerarquía de memoria de CUDA

Las matrices de co-ocurrencia tienden a concentrar sus elementos en torno a la diagonal principal.

Algunos ejemplos ilustrativos:

Regeneración ósea según diferentes tinciones:

DVIDIA

Solución: Utilizar matrices dispersas para minimizar el consumo de memoria.

Las bazas de la GPU para mejorar implementaciones ya existentes en CPU

- Explotar el paralelismo inherente a la aplicación: Elegir el número de threads óptimo y su despliegue en bloques.
- Utilizar mecanismos específicos para el acceso a memoria en GPU.
 - Evitar conflictos en el acceso a bancos de memoria.
 - Grandes latencias en el acceso a memoria global, poca capacidad de memoria local y muy cercana a la velocidad del banco de registros.
 - Elección de la estructura de datos más adecuada.
- Crear kernels que reutilicen datos.

DVIDI

O.

Implementación mediante matrices dispersas: Utilizamos el formato coordenado

Ejemplo:

Resulta algo más difícil de acceder que las listas simple o doblemente enlazadas, pero también es más compacto, que es nuestra prioridad aquí.

Resultados para las conversiones de color

RGB to XYZ 140.01 ms. 1.27 ms. 109.47x RGB to Luv 273.83 ms. 1.42 ms. 191.62x RGB to LA*B* 267.92 ms. 2.23 ms. 119.66x RGB to HSV 16.60 ms. 0.57 ms. 28.98x RGB to sRGB 123.51 ms. 1.23 ms. 99.84x sRGB to XYZ 16.50 ms. 0.43 ms. 37.59x sRGB to Luv 150.31 ms. 0.57 ms. 263.25x sRGB to LA*B* 144.41 ms. 1.29 ms. 111.68x	Conversión	Tiempo en CPU	Tiempo en GPU	Aceleración en GPU
RGB to Luv 273.83 ms. 1.42 ms. 191.62x RGB to LA*B* 267.92 ms. 2.23 ms. 119.66x RGB to HSV 16.60 ms. 0.57 ms. 28.98x RGB to sRGB 123.51 ms. 1.23 ms. 99.84x sRGB to XYZ 16.50 ms. 0.43 ms. 37.59x sRGB to Luv 150.31 ms. 0.57 ms. 263.25x sRGB to LA*B* 144.41 ms. 1.29 ms. 111.68x	RGB to XYZ	140.01 ms.	1.27 ms.	109.47x
RGB to LA*B* 267.92 ms. 2.23 ms. 119.66x RGB to HSV 16.60 ms. 0.57 ms. 28.98x RGB to sRGB 123.51 ms. 1.23 ms. 99.84x sRGB to XYZ 16.50 ms. 0.43 ms. 37.59x sRGB to Luv 150.31 ms. 0.57 ms. 263.25x sRGB to LA*B* 144.41 ms. 1.29 ms. 111.68x	RGB to Luv	273.83 ms.	1.42 ms.	191.62x
RGB to HSV 16.60 ms. 0.57 ms. 28.98x RGB to sRGB 123.51 ms. 1.23 ms. 99.84x sRGB to XYZ 16.50 ms. 0.43 ms. 37.59x sRGB to Luv 150.31 ms. 0.57 ms. 263.25x sRGB to LA*B* 144.41 ms. 1.29 ms. 111.68x	RGB to LA*B*	267.92 ms.	2.23 ms.	119.66x
RGB to sRGB 123.51 ms. 1.23 ms. 99.84x sRGB to XYZ 16.50 ms. 0.43 ms. 37.59x sRGB to Luv 150.31 ms. 0.57 ms. 263.25x sRGB to LA*B* 144.41 ms. 1.29 ms. 111.68x	RGB to HSV	16.60 ms.	0.57 ms.	28.98x
sRGB to XYZ 16.50 ms. 0.43 ms. 37.59x sRGB to Luv 150.31 ms. 0.57 ms. 263.25x sRGB to LA*B* 144.41 ms. 1.29 ms. 111.68x	RGB to sRGB	123.51 ms.	1.23 ms.	99.84x
sRGB to Luv 150.31 ms. 0.57 ms. 263.25x sRGB to LA*B* 144.41 ms. 1.29 ms. 111.68x	sRGB to XYZ	16.50 ms.	0.43 ms.	37.59x
sRGB to LA*B* 144.41 ms. 1.29 ms. 111.68x	sRGB to Luv	150.31 ms.	0.57 ms.	263.25x
	sRGB to LA*B*	144.41 ms.	1.29 ms.	111.68x

Procesadores utilizados en la evaluación experimental de todos estos algoritmos

Parámetro hardware	CPU	GPU
Modelo comercial	Intel Core 2 Duo	Nvidia GeForce
Código de referencia	E6400	8800 GTX (G80)
Frecuencia de reloj	2.13 GHz	575 MHz
Potencia bruta de cálculo	10 GFLOPS	520 GFLOPS
Anchura del bus de memoria	64 bits	384 bits
Reloj para la memoria	2x333 MHz	2x900 MHz
Ancho de banda de la memoria	10.8 GB/sg.	86.4 GB/sg.
Tamaño y tipo de memoria	2 GB DDR2	768 MB GDDR3

Manuel Ujaldon - Nvidia CUDA Fellow

Resultados para el operador LBP

Tamaño de la ventana	CPU/C++	GPU/Cg	GPU/CUDA	Aceleración en GPU
128x128	3.95 ms.	1.01 ms.	0.07 ms.	54.86 x
256x256	17.83 ms.	1.09 ms.	0.14 ms.	127.35 x
512x512	76.70 ms.	1.92 ms.	0.41 ms.	184.81 x
1K x 1K	310.65 ms.	6.88 ms.	1.56 ms.	198.62 x
2K x 2K	1234.96 ms.	23.91 ms.	6.11 ms.	201.98 x

• Se consiguen mayores aceleraciones a medida que aumenta el tamaño de la ventana.

• La GPU es más efectiva en ventanas grandes, mientras que CUDA se luce más en tamaños de ventana pequeños.

on - Nvidia CUDA Fellow

anuel Ujaldon - Nvidia CUDA Fellow

Resultados para las matrices de co-ocurrencia. Mejoras en GPU y usando matrices dispersas

Tamaño de la ventana	CPU/ densa	GPU/ densa	GPU/ dispersa	% de datos no nulos	Mejora dispersa	GPU/CPU
4x4	1.36	7.61	0.10	0.024%	76.10x	13.60x
8x8	2.82	7.62	0.16	0.097%	47.62x	17.62x
16x16	2.82	7.58	0.39	0.390%	19.43x	7.23x
32x32	3.04	7.63	0.74	1.562%	10.31x	4.10x
64x64	3.08	7.76	1.74	6.250%	4.45x	1.77x
128x128	2.94	8.54	7.70	25%	1.10x	0.38x
256x256	2.96	9.19	46.49	100%	0.19x	0.32x

La GPU es más efectiva cuanto más dispersa es la matriz.

Resultados para los momentos de Zernike para toda una imagen de 1K x 1K

Momentos calculados (nº)	Método recursivo óptimo en CPU	Método directo en GPU	Aceleración en GPU
A4,* (3)	62.5 ms.	19.0 ms.	3.28 x
A8,* (5)	54.5 ms.	36.6 ms.	1.48 x
A12,* (7)	62.5 ms.	50.5 ms.	1.23 x
A16,* (9)	78.0 ms.	68.2 ms.	1.14 x
A20,* (11)	93.5 ms.	90.0 ms.	1.03 x

Mayores aceleraciones en GPU en los momentos de orden inferior.

Resultados para las matrices de co-ocurrencia. Mejoras según formato de la matriz dispersa

Tamaño de la ventana	Formato coordenado	Listas simplemente enlazadas	Listas doblemente enlazadas
4 x 4	0.10	0.13	0.30
8 x 8	0.14	0.25	0.58
16 x 16	0.36	1.02	1.52
32 x 32	0.45	2.31	4.91
64 x 64	1.13	3.46	6.52
128 x 128	6.58	19.85	23.33
256 x 256	43.19	65.99	78.19

La GPU es más efectiva utilizando formatos sencillos de matrices dispersas.

Manuel Uialdon - Nvidia CUDA Fellow

Síntesis de resultados. Caracterización de cada algoritmo sobre la GPU

Rasgo a cuantificar	Operadores streaming: Conversiones de color	Operador stencil: LBP	Operador con indirecciones: Matrices de coocurrencia	Operador recursivo: Momentos de Zernike
Entrada	Un píxel	Ventana 3x3	Subimagen	Ventana variable
Salida	Un píxel	Un solo valor	Cto. de valores	Matriz de tam. var.
Canales de color	Tres	Uno	Uno	Tres
Rango computacional	Por píxel	Por píxel	Por subimagen	Por píxel
Peso computacional	Muy ligero	Ligero	Pesado	Muy pesado
Tipo de operador	Streaming	Stencil	Accesos indirectos	Recursivo
Reutilización de datos	Ninguno	Bajo	Muy alto	Alto
Localidad de acceso	Ninguna	Baja	Alta	Muy alta
Intensidad aritmética	Muy alta	Media	Alta	Baja
Acceso a memoria	Bajo	Medio	Alto	Muy alto
Aceleración en GPU	25-250x	50-200x	1-2x	0.7-1x
			Address of the Part of the	and the second second second

Recomendaciones finales para seleccionar los kernels que son más apropiados en GPU

- Implementar sobre todo kernels de computación:
 - Regulares.
 - Masivamente paralelos.
 - Aritméticamente intensivos.
- Adaptar el algoritmo para expresarlo mediante:
 - Un número elevado de hilos.
 - Hilos muy ligeros.
- Rediseñar el algoritmo para evitar recursividades y recurrencias.
 - Adoptar variantes no recursivas si es posible.
- Pensar en las optimizaciones específicas de CUDA:
 - Maximizar el ancho de banda: Coalescing y conflictos en bancos.
 - Maximizar el uso del tamaño de memoria compartida disponible.

Prestaciones comparativas CPU/GPU en cálculo y acceso a memoria

Procesador	CPU (AMD)	GPU (Nvidia)
Modelo arquitectural	Opteron X2 2218	Quadro FX 5600
Frecuencia de reloj	2.6 GHz	600 MHz / 1.35 GHz
Número de núcleos	2 cores	128 stream processsors
Potencia de cálculo	2 cores x 4.4 GFLOPS = 8.8 GFLOPS	madd(2 FLOPS) x128 SP x 1.35 GHz = 345.6 GFLOPS
En el total de 18 nodos x 2 zócalos	316.8 GFLOPS	ii 12.4 TFLOPS !!
Memoria		GPU (Nvidia)
Capacidad y tipo	8 Gbytes de DDR2	1.5 Gbytes de GDDR3
Frecuencia de reloj	2x 333 MHz	2x 800 MHz
Anchura del bus	128 bits (doble canal)	384 bits
Ancho de banda	10.8 Gbytes/sg.	76.8 Gbytes/sg.

Paralelismo y programación

Niveles de paralelismo:

- Multi-nodo: Los 18 nodos de visualización de BALE.
- Multi-zócalo: SMP (Symmetric MultiProcessing): 2 CPUs y 2 GPUs.
- Multi-core: Hilos concurrentes en la CPU.
- Many-core: SIMD (Simple Instruction Multiple Data) en GPU.

PNI en las instrucciones máquina (procesadores segmentados y superescalares).

Herramientas de programación:

- MPI: Para alojar recursos entre los nodos y comunicarlos en BALE.
- POSIX threads (P-threads): Para CPUs multi-core.
- CUDA: Para GPUs many-core.
- C/C++: Para programación secuencial en el host.

Manuel Ujaldon - Nvidia CUDA Fellow

Descripción del proceso

O.

Ganancias en GPU para el clasificador KNN (N= número de ventanas: L= número de momentos computados)

			K = 5		ł	K = 10		ł	K = 20	
N	L	CPU	GPU	Mejora	CPU	GPU	Mejora	CPU	GPU	Mejora
200	4	6,06	112,16	0,05x	8,38	113,39	0,07x	13,22	115,42	0,11x
1000	4	89,97	113,17	0,79x	122,37	114,75	1,06x	183,33	121,40	1,51x
2000	4	350,73	114,06	3,07x	472,58	116,91	4,04x	714,36	128,57	5,55x
4000	4	1383,85	109,61	12,62x	1826,74	121,12	15,08x	2814,86	139,47	20,18x
8000	4	5506,27	124,72	44,14x	7396,22	133,93	55,24x	11211,92	188,72	59,41x
8000	8	5953,49	126,78	46,95x	7902,55	136,44	57,91x	11694,30	193,00	60,59x
8000	16	6661,26	131,44	50,67x	8653,35	145,49	59,47x	12464,66	200,68	62,11x
8000	32	8255,37	151,32	54,55x	10156,24	160,37	63,33x	13908,83	206,61	67,31x
8000	64	11660,05	182,02	64,05x	13455,99	191,04	70,43x	17162,53	243,27	70,53x
							Manuel	l Ujaldon - Nvi	dia CUDA I	⁼ ellow

Resultados experimentales utilizando un solo procesador de BALE (ver HW. más adelante)

Tamaño imagen	Resolución en píxeles		Número de mosaicos de 1K x 1K que contiene la imagen		
Pequeña	32980 x 66426		33 x 65 = 2145		
Mediana	76543 x 63024		75 x 62 = 4659		
Grande	109110 x 80828		107 x 79 = 8453		
Tamaño imagen	En la CP	U	En la GPU		
Tamano Imagen					
Tamano Imagen	Matlab	C++	Cg	CUDA	
Pequeña	Matlab 2h 57' 29"	C++ 43' 40"	Cg 1' 02"	CUDA 27"	
Pequeña Mediana	Matlab 2h 57' 29" 6h 25' 45"	C++ 43' 40" 1h 34' 51"	Cg 1' 02″ 2' 08″	CUDA 27" 58"	

El proceso completo de caracterización y clasificación

• Conversión de color: De RGB a LA*B*

- Operador típico de GPU, pero la memoria compartida de CUDA aún ofrece un potencial de mejora.
- Matriz de co-ocurrencia para el cálculo de párs. estadísticos:
 Baja reutilización de datos.
 - El incremento de los contadores obliga a leer y escribir en memoria.
- Operador LBP (Local Binary Pattern):
 - Utiliza una ventana de 3x3 píxeles vecinos.

Histograma:

Caracterización similar a la de las matrices de co-ocurrencia.

Aceleración sobre la carga computacional anual del hospital (OSU Medical Center)

400 pacientes, 8-10 muestras registradas de cada uno.
 En una sola CPU, el tiempo de procesamiento total para la caracterización y clasificación de todas las muestras es de:

- 🔍 2 años, utilizando Matlab.
- 3.4 meses, utilizando C++.
- En una sola GPU, el tiempo queda reducido a:
 - 5.3 días, utilizando Cg.
 - 2.4 días, utilizando CUDA.
- Paralelizando sobre BALE (ver HW. a continuación):
 - Menos de 2 horas, utilizando 16 nodos CPU-GPU.
- La aceleración total supera los seis órdenes de magnitud.

DVIDI

O.

Desafíos y objetivos

Complejidad: El registro de una muestra de placenta mamaria de ratón compuesta de 500 imágenes tarda 181 horas en una CPU de gama alta.

Objetivo: Reducir este tiempo combinando paralelismo.

Retos a resolver en el camino:

- La distorsión no rígida es una tarea compleja de acometer.
- Aparecen gran cantidad de rasgos a correlar.

Las imágenes son enormes: Desde 16K x 16K a 23K x 62K pixels, ocupando cada una entre 0.7 y 1.5 Gbytes. Para una media de 1,200 imágenes por cada placenta mamaria, necesitamos 3 Tbytes.

La carga de trabajo es intensiva y los métodos iterativos inviables.

Mejora final: Factor de aceleración de 49x en 16 nodos.

nuel Ujaldon - Nvidia CUDA Fello

Registro de imágenes para el análisis de volúmenes microscópicos de alta resolución

DVIDI

O.

Descripción del proceso global

Los bloques verdes son operadores locales independientes que pueden procesarse en paralelo.

Coincidencias entre imágenes

Un fragmento de la primera imagen se sitúa sobre la posición inicial de la segunda imagen (registro rígido).

Este fragmento se utiliza como plantilla para las coincidencias dentro de una ventana de búsqueda más grande centrada en dicha ubicación.

 El grupo de píxeles dentro de la ventana de búsqueda con mayor afinidad se toma como candidato para la coincidencia.
 Las coordenadas de coincidencia se toman como centros

Las coordenadas de coincidencia se toman como centros

Distribución de la carga computacional para cada una de las fases computacionales

La computación de la correlación cruzada normalizada (NCC) basándonos en la FFT

El resultado para una pila de 20 imágenes de 16K x 16K píxeles cada una

Hemos troquelado una esquina para apreciar las secciones entre las imágenes:

O.

Resultado final

Rendimiento según la configuración de cada nodo del supercomputador BALE

Resultados experimentales: Escalabilidad de BALE

O.

Influencia de la GPU en el rendimiento

Conclusiones de la paralelización del registro de imágenes

La paralelización sobre BALE permite explotar conjuntamente múltiples niveles de paralelismo:

- Multinodo y multiprocesamiento simétrico (SMP) [vía MPI].
- Paralelismo de tareas (multi-hilo) [vía P-threads].
- Paralelismo de datos (SIMD) [vía CUDA].

Los núcleos computacionales se comportan de forma muy distinta en CPU y GPU según su:

- Intensidad aritmética.
- Patrón de acceso a memoria.
- Reutilización de los datos.

Se consiguen grandes mejoras en un solo nodo gracias a la GPU, y aceleración casi lineal en el multiprocesador.
Manuel Haldon - Nvida CUDA Fello

3.1. Q-norm: Comparativa frente a supercomputadores de memoria compartida y distribuida

71

Un algoritmo básico: Q-norm

Se trata de un proceso de normalización por cuantiles estadísticos de muestras genéticas que comprenden 470 vectores de 6.5 millones de datos (12 Terabytes en total).

- Colaboradores de mi Departamento en Málaga:
 - A. Rodríguez (implementación en GPU).
 - J.M. Mateos, O. Trelles (implem. en mem. compartida y distribuida).

Q-norm: El proceso de normalización por cuantiles

Plataformas hardware sobre las que ejecutamos el código

Multiprocesador de memoria distribuida ("Pablo"):

Cluster de 256 blades JS20 de IBM (512 CPUs). Cada blade tiene:
 2 CPUs PowerPC 970FX @ 2 GHz.

 $\ensuremath{^{\odot}4}$ Gbytes de memoria, para un total de 1 Terabyte de memoria distribuida.

- Red de interconexión: MIRYNET.
- Multiprocesador de memoria compartida ("Picasso"):
 - Superdome de 16 nodos de HP (128 cores). Cada nodo tiene: 4 CPUs Intel Itanium-2 (alias "Montecito") de doble núcleo @ 1.6 GHz.
 - Total de memoria disponible en conjunto: 384 Gbytes.
 - Red de interconexión: Propietaria.
- Un PC de nuestro laboratorio ("Antonio Banderas"):
 - CPU: Intel Core 2 Quad Q9450, 2.66 GHz, 1.33 GHz FSB, 12 MB L2.
 GPU: GeForce 9800 GX2, 600/1500 MHz, 512 MB de DDR3 a 2 GHz.
 - Discos duros: 2 x 72 GB (RAID 0) Raptors de WD a 10000 RPM.

Pablo (1/8 del viejo Mare Nostrum - 2004). Coste aproximado: 600.000 €

Picasso (Superdome de HP - 2008). Coste superior a los 2 millones de euros

Potencial de mejora en GPU

Hemos utilizado una sola GPU, pero disponemos de hasta seis, lo que nos otorga un gran potencial si montamos arquitecturas multichip y/o multitarjeta.

Nuestro PC "Antonio Banderas": Dotado con una GPU GeForce 9800 GX2 (2008)

O.

Versión OpenMP para Picasso (multiprocesador de memoria compartida)

<pre>nE = LoadProject(fname, fList); // Paso 1: E/S</pre>	#pragma omp parallel shared
<pre>for (i=0;i< nE;i++) { // Paso 2: Ordenar columnas LoadFile(fList, i, dataIn); Qnorml(dataIn, dIndex, fList[i].nG); PartialRowAccum(AvG, dataIn, nG);</pre>	From, To, Range // Open general parallel section
<pre>// Gestionar el vector índice en memoria o disco }</pre>	SOLO HAY QUE AÑADIR ESTAS DOS DIRECTIVAS AL CODIGO
<pre>for (i=0;i<ng;i++) 3:="" =avg[i].num;<="" avg[i].av="" computar="" medias="" paso="" pre=""></ng;i++)></pre>	ORIGINAL
// Producir el fichero de salida con // el vector de datos ordenados para cada columna	#pragma.omp.parallel.shared
<pre>for (i=0;i<ne;i++) pre="" {<=""></ne;i++)></pre>	From, To, Range
<pre>Obtener el vector índice del disco para cada col. for (j=0;j<ng;j++) preparar="" salida<br="" vector="" {="">dataOut[dIndex[j]]=AvG[j].Av; // Pos. en fichero para escribir vector salida</ng;j++)></pre>	
}	

Versión con pase de mensajes para Pablo (multiprocesador de memoria distribuida)

Tiempos de ejecución de Q-norm (en segs.):

Desglose de la paralelización en GPU

El tamaño del bloque CUDA resulta decisivo, pero la GPU no luce más porque Q-norm carece de intensidad aritmética.

Hilos por bloque	Tiempo de GPU	Mejora parcial	Mejora acumul.	Transferencias	Segs.
32	204,38			1. De disco a CPU (SAS y RAID 0 de 2)	162,32
64	170,24	17%	17%	2. De CPU a GPU (PCI-express 2)	13,89
128	, 141.21	18%	31%	3. De GPU a CPU (PCI-express 2)	11,51
256	122 13	13%	40%	4. De CPU a disco (asíncrono)	16,70
E10	114.02	10 /0	440/	Tiempo total de E/S (1+4)	179,02
512	114,92	0%	44%	Tiempo total de comunic. CPU-GPU	25,40
Q-norn	n se en	cuentr F/S	а	Tiempo total de transferencia	204,42
Manuel Histon - Núdia CUDA Fellow					

Comparativa CPU vs. GPU: Tiempos de ejecución de Q-norm (segs.)

Comparativa CPU vs. GPU: Resumen de prestaciones hardware

Procesador	Q9450	9800 GX2	C2050	GTX 480
Arquitectura	Intel Core 2	Nvidia G92	Nvidia Fermi	Nvidia Fermi
Número de cores	4	128	448	480
Frecuencia core	2.66 GHz	1.35 GHz	1.15 GHz	1.40 GHz
Potencia de cálculo	32.56 GFLOPS	345.6 GFLOPS	515.2 GFLOPS	672 GFLOPS
Tamaño DRAM	4 GB DDR3	512 MB GDDR3	3 GB GDDR5	1.5 GB GDDR5
Ancho de banda	28.8 GB/s.	64 GB/s.	144 GB/s.	177 GB/s.
Coste aproximado	€ 300	€ 200	€ 1500	€ 500
			Manuel Ujaldon	ı - Nvidia CUDA Fellow

O.

Para descargarse los códigos

 Las tres versiones analizadas, así como documentación anexa, pueden descargarse de nuestro servidor Web:
 https://chirimovo.ac.uma.es/gnorm

Resultados experimentales. Aceleración y relación rendimiento/coste.

	CPU Xeon E5645	GPU Tesla C1060	GPU Tesla C2050	GPU GeForce GTX 480	
Número de cores	6	240	448	480	
Velocidad del core	2.40 GHz	1.30 GHz	1.15 GHz	1.40 GHz	
GFLOPS	144	312	515	672	
T. cómputo (segs)	45 234	1 195 (38x)	507 (89x)	270 (167x)	
Comunic. CPU-GPU	Ninguna	187	183	170	
Tiempo total	45 234 segs. (más de 12 horas)	1 385 (32x) (23 minutos)	699 (65x) (11 minutos)	441 (103x) (7 minutos)	
Coste estimado	\$ 400	\$ 1600	\$ 1600	\$ 400	
Escalabilidad	Referencia	Buena	Mejor	Optima	
Rendimiento/coste	1	8,17	16,17	103	
Manuel Ujaldon - Nvidia CUDA Fellow					

Minería de datos en SNPs

El análisis de SNPs (Single Nucleotide Polymorphisms) en muestras genéticas de pacientes (GWAS) permite inferir la predisposición a ciertas enfermedades degenerativas como el Alzheimer.

El problema una vez más es el elevado volumen de datos a procesar: Más de 2.5 billones de interacciones para una muestra de 1329 individuos (1014 sanos y 315 enfermos).

Manuel Ujaldon - Nvidia CUDA Fellow

DVIDI

Reflexiones finales

La computación de altas prestaciones ha avanzado de forma uniforme en los últimos 20 años, demostrando escalabilidad hacia un futuro donde el paralelismo tiene una importancia decisiva.

Existe un déficit en la programación paralela de aplicaciones, donde la bioinformática suele ser el referente. Debemos suplirlo con una buena oferta formativa.

Aunque la curva de aprendizaje es alta al principio, se suaviza mucho después, y termina recompensando sobremanera el esfuerzo realizado.

La programación de plataformas gráficas se erige como uno de los caballos ganadores para lograr esta meta.