

Cálculos cuánticos ab initio en ciencia de materiales

Eduardo Menéndez & Ana Montero

Grupo de Modelación de Materiales, Facultad de Ciencias University of Chile Facultad de FCNMMA, UTEM

emenendez@uchile.cl, ; amonteroa@utem.cl

Participantes@NLHPC

- Ana Montero UTEM
- Felipe Barría, Lucas Lodeiro FC-UChile
- Walter Orellana UNAB
- Mauricio Flores UCHile, USS, PUCV
- Raul Torres UNAM
- Juan Ríos CINVESTAV
- Jesús Castellanos U Guanajuato

Colaboradores not@NLHPC

- Perla Wahnón Univ Politécnica de Madrid
- Pablo Palacios –
- Gregorio García –
- José C. Conesa CSIC
- Diego Solís UNAM
- Juan L. Peña CINVESTAV

Outline

- Solar cells
- Quantum mechanics calculations
- Defects in CdTe
- Halide perovskites

Tipos de celdas fotovoltaicas

- Silicio cristalino (comercial, optimizada)
- Capa delgada (comercial, en desarrollo)
- Celdas de colorante (laboratorio)
- Orgánicas (laboratorio)
- Tandem (laboratorio)

Evolución tecnológica

 $Eficiencia = \frac{Energía \ eléctrica \ producida}{Energía \ solar \ recibida}$

Low cost PV technologies with record efficiency > 20%

NREL chart of record efficiencies

Área de nuestro trabajo

The Next Generation solar cells tandem Si/perovskite

Oxford PV is building a factory

Example: CdTe/CdS solar cell (η>22%)

The Fermi level determines how do the bands align across de interfaces.

High hole conductivity is needed for the holes to reach the back contact.

Source: A. Smetz et al, Solar Energy, UIT Cambridge (2018).

Our approach: quantum calculations at the atomic scale

Method

Density Functional Theory (DFT)

Hohenberg, Pierre; Walter Kohn (1964). "Inhomogeneous electron gas". Phys. Rev. 136 (3B): B864–B871.

Hardware and support from NLHPC

Details:

http://www.nlhpc.cl

Basis sets: plane waves Pseudopotentials Structural optimization with van der Waals corrections. Wavefunctions and energies from hybrid functionals

DFT Kohn-Sham equation (1965)

The ground state energy is given by

$$E_{total} = \sum_{i=1}^{N} f_i \langle \phi_i | -\frac{1}{2} \nabla^2 + V(\mathbf{r}) | \phi_i \rangle + \frac{1}{2} \iint d\mathbf{r} d\mathbf{r}' \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + E_{xc}[n(\mathbf{r})]$$

Initial guess for density: $n(\mathbf{r})$

$$V_{eff}(\mathbf{r}) = V(\mathbf{r}) + \int d\mathbf{r}' \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + v_{xc}(\mathbf{r}), \quad \text{con } v_{xc}(\mathbf{r}) = \frac{\delta E_{xc}}{\delta n(\mathbf{r})}$$

$$\left(-\frac{1}{2}\nabla^2 + V_{eff}(\mathbf{r})\right)\phi_i(\mathbf{r}) = \epsilon_i\phi_i(\mathbf{r}) \rightarrow \{\epsilon_i, \phi_i(\mathbf{r})\} \rightarrow$$

$$\rightarrow n_{nueva}(\mathbf{r}) = \sum_i f_i |\phi(\mathbf{r})|^2, \quad 0 \le f_i \le 1 \text{ is the occupation number}$$
compare $n_{new}(\mathbf{r}) \text{ con } n(\mathbf{r})$
if not equal, then $n(\mathbf{r}) = \alpha n_{nueva}(\mathbf{r}) + (1 - \alpha)n(\mathbf{r})$

Eduardo Menendez, GNM, Universidad de Chile. http://www.gnm.cl

DFT Kohn-Sham equation (1965)

Eduardo Menendez, GNM, Universidad de Chile. http://www.gnm.cl

Estructura cristalina periódica

+ Base

 $\vec{\tau}_a$ posición del átomo *a* respecto al punto de la red

Cristal:

Estructura cristalina periódica

 $\vec{R}_{n_1n_2n_3a} = R_{n_1n_2n_3} + \vec{\tau}_a$

 τ_a posición del átomo *a* respecto al punto de la red

Cristal:

Situaciones en que la periodicidad es rota y necesitamos la escala de dimensiones relevante requiere simular muchos átomos.

Defectos Interfaces Nanoestructuras

Intrinsic defects

Other defects: self-interstitials, di-vacancies, vacancy-intertstitial, etc

Always present: Thermodynamic concentration: $N_i = N_{sites} N_{config} \exp \left(\frac{-\Delta H^f}{k_B T}\right)$ Formation energy

Materials are like people: it's the defects that make them interestin

Bands for standard supercells Cd₃₂Te₃₂/Cd₃₂Te₃₁

A diluted point defect is not expected to destroy the conduction band. A point defect is a perturbation.

The standard 64/63 atom supercell is not appropriate.

I acknowledge advice by P. Wahnón to plot the bands, even when defects are not periodic systems by definitions.

Bands for $Cd_{128}Te_{128}/Cd_{128}Te_{127}$ supercells

CI-defects: Formation energy

WHY STUDY THE PEROVSKITE?

MAPI Perovskite

Methylammonium-Lead-Iodide

Т~327 К

STUDY of $CH_3NH_3PbI_3$

Band Diagrams with different DFT approximations

5 4 3 PBE PBE+SO HSE+SO $PBE\alpha + SO$ $E_{g} = 1.81 \text{ eV}$ $E_g = 0.80 \text{ eV}$ $E_{g} = 1.31 \text{ eV}$ $E_{g} = 1.63 \text{ eV}$ 2 Energy (eV) 1 0 -1 -2 -3 Г YX Г ΥX X Г YX Г Y

Menéndez-Proupin et al., Phys. Rev. B 90, 045207 (2014)

Orthorhombic

STUDY of $CH_3NH_3PbI_3$

Thermal effect

Ab initio Molecular Dynamic

- NPT and NVT ensembles
- PBE and vdW functionals
- Relatively long simulation time (up to 100 ps)
- T = 220 K (Langevin thermostat)
- 1 fs of time step

STUDY of CH₃NH₃PbI₃

Tetragonal

Thermal effect

Montero-Alejo. A. L. et al., JPCC 2016, 120, 7976-7986.

STUDY of $CH_3NH_3PbI_3$

Thermal effect on the Electronic properties

SD (Γ) 4.0 40 4.0 35 3.5 vdW PBE 3.5 30 3.0 3.0 25 Energy (eV) (eV) CBM z.5 Σuergy 2.5 20 15 2.0 2.0 VBM 10 1.5 1.5 5 1.0 1.0 0 10 20 30 0 Г М z

Tetragonal

Montero-Alejo. A. L. et al., JPCC 2016, 120, 7976-7986.

Cross-sectional SEM image of FTO/PEDOT-PSS/perovskite/fullerene derivatives

Tian, C. et al. ACS Appl. Mater. Interfaces 2016, 8, 31426-31432

Working conditions of the devices

COMPUTATIONAL METHODOLOGY

- ▶ ✓ Model structures: Isolated: HSE/6-31G(d) & PBC: optB88-vdW , ecutwfn = 50 Ry, ecutrho = 400 Ry, USPP
- \checkmark Electronic properties: optB88-vdW; Hybrid: HSE06 / PBE0(α) + Spin-Orbit Coupling (SOC)

Computational packages: Gaussian 09, Quantum Espresso, VASP

✓ HSE06 – SOC, ENCUT=295 eV, PAW

Interface MAPI(001-MAI) / ACIS (Group down)

Acknowledgments

- CONICYT/FONDECYT Regular Grants No. 1130437, 1171807.
- CONICYT/FONDECYT Initiation Grant N.º. 11180984
- Nucleo Milenio Multimat
- Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).

Phys. Status Solidi B **252**, 2649-2656 (2015) Phys. Status Solidi B **256**, 1800219 (2019) Physica B **568**, 81 (2019) Sci. Rep. **9**, 9194 (2019)