Curso WRF en laboratorio NLHPC

15 de noviembre de 2022

Miguel Lagos Zúñiga

Ingeniero Civil, MSc. Recursos y medio ambiente hídrico Dr. (c) en Cs. de la Ingeniería, mención fluidodinámica (CR2) Profesional docente, Departamento de Ingeniería Civil Investigador Asociado, Advanced Mining Technology Center

mlagosz@uchile.cl

National Laboratory for High Performance Computing Chile Parte de este material fue adaptado del curso WRF users tutorial (2021), preparado por investigadores de NCAR Michael Duda & Dave Gill

Agenda

- Estructura principal de WRF
- Configurando un dominio desde WPS
 - Elección de proyección, grillas y condiciones iniciales y de borde.
- Configurando una simulación desde WRF
 - Ejecutar programas real y wrf
- Visualización básica de resultados y archivos intermedios
 - ncview

The WRF Pre-Processing System (WPS)

¿Por qué la proyección importa?

For a nominal 12-km grid, the above projection vields grid distances from 9.9 km to 14.6 km.

Mercator projection, $\phi_1 = 42.0, 0.819 \le m \le 1.218$ Lambert conformal projection, $\phi_1, \phi_2 = 30.0, 47.5, 0.988 \le m \le 1.023$

For a nominal 12-km grid, the above projection yields grid distances from 11.7 to 12.1 km.

Duda (2022)

¿Por qué la proyección importa?

La elección de parámetros geográficos nos entrega un grillado que puede distorsionar las distancias en alguna parte del globo.

$$\Delta x_{geographical} = \Delta x_{nominal} / m$$

where *m* is a *map scale factor*.

El paso temporal máximo al que WRF es estable numéricamente está dado por "m", no por la resolución horizontal nominal que le damos a nuestras simulaciones.

National Laboratory for High Performance Computing Chile Duda (2022)

GEOGRID: Definiendo el dominio de WRF

Dependiendo de la proyección debemos dar un par de coordenadas de referencia (*ref_lon,* ref_lat **ref_lat**); y el número de nodos que se resolverán en la distancia NS (*e_sn*) y WE (e_we); dadas unas distancias dx y dy especificadas en mi dominio.

GEOGRID: Interpolación de campos estáticos

 Dada la configuración de mi dominio, geogrid interpola campos a cada punto de mi grilla, estos campos están disponibles y deben ser referenciados en el archivo de configuración de WPS.

The WRF Pre-Processing System (WPS)

UNGRIB: Traduciendo CI & CB

 GRIB es un formato de datos grillados estándar de la WMO.

- "General Regularly-distributed Information in Binary"

 Los campos dentro de una fila están identificados exclusivamente por códigos, los que deben ser traducidos a los campos correspondientes a través de sus respectivas V-Tables (e.g., GFS, Era-Interim, NOAA, etc.).

Ejemplo VTable para archivo GRIB2

metgrid	GRIB2	GRIB2	GRIB2	GRIB2
Description	Discp	Catgy	Param	Level
<pre>metgrid Description Temperature U V Relative Humidity Height Temperature at 2 m Relative Humidity at 2 m U at 10 m V at 10 m V at 10 m Surface Pressure Sea-level Pressure Soil Moist 0-10 cm below grn layer (Up) Soil Moist 10-40 cm below grn layer Soil Moist 40-100 cm below grn layer Soil Moist 100-200 cm below gr layer Soil Moist 10-200 cm below gr layer</pre>	Discp 0 0 0 0 0 0 0 0 0 0	Catgy Catgy 2 2 2 1 2 3 0 2 3 0 0 0 0 0 0 0	Param 0 2 3 1 5 0 1 2 3 0 1 2 2 3 1 1 2 3 1 2 3 1 1 2 3 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1	Level 100 100 100 100 100 100 103 103
T 0-10 cm below ground layer (Upper) T 10-40 cm below ground layer (Upper) T 40-100 cm below ground layer (Upper) T 100-200 cm below ground layer (Bottom) T 10-200 cm below ground layer (Bottom) Ice flag Land/Sea flag (1=land, 0 or 2=sea) Terrain field of source analysis Skin temperature (can use for SST also) Water equivalent snow depth Dominant soil type cat. (not in GFS file) Dominant land use cat. (not in GFS file)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 2 0 0 1 3 0	0 0 0 0 0 7 0 13 0 198	106 106 106 106 1 1 1 1 1 1 1 1 1 1 1 1 1

National Laboratory for High Performance Computing Chile

Resumen pasos ungrib

Extrae campos meteorológicos

Si es necesario deriva valores (e.g. HR a partir de T y q)

Crea archivos intermedios

The WRF Pre-Processing System (WPS)

El programa metgrid

- Interpola campos meteorológicos de forma horizontal (extraídos por ungrib) hacia las grillas de geogrid.
- Realiza rotación de vientos, para que u y v, sean paralelos a sus coordenadas x e y correspondientes.

A wind vector, shown in terms of its U and V components with respect to the source grid. The same vector, in terms of its U and V components with respect to the WRF simulation grid.

El programa metgrid

- Los archivos de salida contienen tanto:
 - Campos estáticos interpolados
 - Campos meteorológicos interpolados
 - Todo a la grilla definida por geogrid.

Resumen de WPS

Configurando nuestro dominio

En el directorio WPS, editemos el archivo namelist.wps para el evento de río Atmosférico Zonal de finales de enero de 2021; para simular 11 hrs a su elección.

Configurando nuestro dominio

Es muy importante editar la ubicación de los archivos estáticos por studentXX (su usuario)

Ejecutando WPS: GEOGRID

En el directorio WPS ejecute: ./geogrid.exe

Si se ejecuta de forma exitosa verá un mensaje de "Successful completion of geogrid", junto con los archivos asociados a los dominios

geo_em.d01.nc geo_em.d02.nc

Ejecutando WPS

Visualicemos nuestro dominio

module load NCL/6.6.2 ncl util/plotgrids_new.ncl

Ejecutando WPS: UNGRIB

Linkear al directorio donde se encuentran las Cl & CB:

./link_grib.csh /home/courses/student80/CI_CB/fnl*

Asignar la VTable asociada a archivos GFS: In -sf ungrib/Variable_Tables/Vtable.GFS Vtable

Ejecutar ungrib ./ungrib.exe

Ejecutando WPS: UNGRIB

Si ungrib corrio exitósamente deberíamos ver archivos del estilo: FILE:2021-01-30 _12 FILE:2021-01-30 _15

junto al mensaje "Successful completion of ungrib"

Ejecutando WPS: METGRID

Ejecutar metgrid ./metgrid.exe Al finalizar deberíamos ver el mensaje "Successful completion of metgrid"

En nuestro directorio de trabajo deberíamos además ver los siguientes archivos: met_em.d01.2021-01-30_12:00:00.nc met_em.d01.2021-01-30_15:00:00.nc

Preparando las CI&CB: REAL

Ejecutando REAL

REAL es un programa que permite verificar que los archivos generados en metgrid, contengan los campos necesarios para ejecutar una simulación real en WRF, entre otras cosas REAL interpola los campos de metgrid verticalmente para la grilla establecida por quien modela.

TERRAIN FOLLOWING Vertical Coordinate System

ISOBARIC Vertical Coordinate System

HYBRID Vertical Coordinate System

Configurando WRF

&time_control run_days run_hours run_minutes run_seconds start_year start_month start_day start_hour end_year end_month end_day end_hour interval_seconds input_from_file history_interval frames_per_outfile restart restart interval io_form_history io_form_restart io_form_input io_form_boundary

=	0,
=	11,
=	0,
=	0,
=	2021, 2021,
=	01, 01,
=	30, 30,
=	12, 12,
=	2021, 2021,
=	01, 01,
=	30, 30,
=	23, 23,
=	10800
=	.true.,.true.,
=	60, 60,
=	1000, 1000,
=	.false.,
=	7200,
=	2
=	2
=	2
	2

National Laboratory for High Performance Computing Chile

Configurando WRF

	&domains				
/	time_step	=	60,		
1	<pre>time_step_fract_num</pre>	=	0,		
	<pre>time_step_fract_den</pre>	=	1,		
	max_dom	=	2,		
2	e_we	=	150,	220,	
	e_sn	=	130,	214,	
	e_vert	=	45,	45,	
	dzstretch_s	=	1.1		
	<pre>p_top_requested</pre>	=	5000,		
J	<pre>num_metgrid_levels</pre>	=	34,		
1	<pre>num_metgrid_soil_levels</pre>	=	4,		
2	dx	=	27000,		
2	dy	=	27000,		
į	grid_id	=	1,	2,	
	parent_id	=	0,	1,	
	i_parent_start	=	1,	53,	
1	j_parent_start	=	1,	25,	
1	parent_grid_ratio	=	1,	3,	
5	<pre>parent_time_step_ratio</pre>	=	1,	3,	
	feedback	=	1,		
-	smooth_option	=	0		

National Laborato for High Performance Computing Chile **fcfm**

Configurando WRF

&physics		
physics_suite	= 'CONU	S'
mp_physics	= -1,	-1,
cu_physics	= -1,	-1,
ra_lw_physics	= -1,	-1,
ra_sw_physics	= -1,	-1,
<pre>bl_pbl_physics</pre>	= -1,	-1,
sf_sfclay_physics	= -1,	-1,
sf_surface_physics	= -1,	-1,
radt	= 15,	15,
bldt	= 0,	0,
cudt	= 0,	0,
icloud	= 1,	
num_land_cat	= 21,	
sf_urban_physics	= 0,	0,
fractional_seaice	= 1,	

Ejecutando real

Linkear a los archivos creados por metgrid en la carpeta WRF/run/

In -sf /home/courses/student80/WPS/met_em* .

Ejecutar tarea real: exec_real

Visualizando tarea real

#!/bin/bash
#-----Script SBATCH - NLHPC -----#SBATCH -J ex_real
#SBATCH -p slims
#SBATCH -n 40
#SBATCH --ntasks-per-node=20
#SBATCH --mem-per-cpu=2300
#SBATCH --mail-user=mlagosz@uchile.cl
#SBATCH --mail-type=ALL
#SBATCH -t 00-00:20:00
#SBATCH -o zm_real_%j.out
#SBATCH -e zm_real_%j.err

cd /home/courses/student16/WRF/run
srun ./real.exe

Ejecutando real:

sbatch exec_real

squeue -i5 #consulta estado de la tarea cada 5 segundos

Si finalizó exitosamente, deberían aparecer los archivos: wrfbdy_d01 wrfinput_d01 wrfinput_d02

Ejecutando WRF

```
#!/bin/bash
#-----Script SBATCH - NLHPC ------
#SBATCH -J ex_wrf
#SBATCH -p slims
#SBATCH -n 80
#SBATCH - ntasks-per-node=20
##SBATCH -c 1
#SBATCH - mem-per-cpu=2300
#SBATCH - mail-user=mlagosz@uchile.cl
#SBATCH - mail-type=ALL
##SBATCH -t 00-00:20:00
#SBATCH -o zm_real_%j.out
#SBATCH -e zm_real_%j.err
```

cd /home/courses/student16/WRF/run
srun ./wrf.exe

Ejecutando WRF

sbatch run_wrf squeue -i5

tail rsl.error.0000

Si terminó exitosamente, deberíamos ver los siguientes archivos en nuestro directorio:

wrfout_d01_2021-01-30_12:00:00

Visualización básica con ncview

#Cargamos el módulo ncview en NLHPC module load ncview/2.1.7 abrimos algún archivo

ncview wrfout_d01_2021-01-30_12:00:00

Muchas gracias

mlagosz@uchile.cl

